# DIAGNOSTIC CHARACTERIZATION OF BATTERY ELECTRODES







presented by

#### Frank McLarnon

Lawrence Berkeley National Laboratory Berkeley, California 94720

**US – China Electric Vehicle and Battery Technology Workshop** 

**August 31, 2010** 

#### Li-Sn Reference Electrode Cell Measurements

Measurements in cells with Li-Sn reference electrodes help quantify contributions of positive and negative electrodes to cell impedance and impedance rise during cycling and aging

Full cell data show that electrolyte salt has a significant effect on cell impedance: LiBOB > LiBF<sub>4</sub> > LiF<sub>2</sub>OB > LiPF<sub>6</sub>

The negative electrode is more affected by electrolyte salt than the positive electrode

Other data indicate that the electrolyte salt has a strong influence of SEI properties



**FULL** 

20

15

10

20

25

 $Z(Re), \Omega-cm^2$ 

30

**NEG** 

30

40

50

35

35

60

40

40

16

12

8

10

10

#### **Surface Electronic Conductance Sensing AFM**



- Scanning probe microscope with an electronically conducting tip detects local electrode morphology and surface electronic conductance
- Identified changes in electrode surface morphology, surface chemistry, and SEI thickness that accompanied cell cycling

#### Raman Microscopy of Composite Electrodes

- Raman microscopy detects frequency shift of light scattered from an electrode
  - Probes local structure and composition
- Raman images show graphite, carbon black, and metal oxide distribution
- Revealed significant surface composition changes during cycling
- Identified carbon redistribution as a contributor to Li-ion cell power fade



Cathode from cycled cell



**Optical image** 



Fresh cathode

R. Kostecki, LBNL

#### Raman Microscopy: Electrode Structure







480 cycles, 20°C, 33% Q<sub>rev</sub> loss



Specific Raman shifts are characteristic of disordered
 (D) and graphitic (G) forms of carbon

- Raman images of local D/G ratios identify areas where the original graphitic structure degraded due to cell cycling
- Identified graphite surface degradation as a contributor to cell capacity fade



### Infrared Spectroscopy

- Fast, simple, and sensitive to all components regardless of crystallinity
- Qualitative and quantitative analysis
- Sensitive to local coordination and oxidation state



G. Chen and T. J. Richardson, *J. Electrochem. Soc.*, **156**, A756-A762 (2009).

#### Transmission Electron Microscopy (TEM)

- A thin sample is bombarded with a highly focused electron beam: images and diffraction patterns are formed by interaction of these electrons with the atomic constituents in the sample
- Analysis of TEM images and diffraction patterns yields information on the sample crystal structure and defects that are present



Li<sub>2</sub>MnO<sub>3</sub> image showing Li ordering in transition metal (TM) planes. Li columns (dark) are surrounded by Mn columns (bright)



#### **Transmission Electron Microscopy**



**Detailed structural imaging** 



**Electron diffraction** identifies phases



High-resolution TEM shows phase boundary

G. Chen, X. Song, and T. J. Richardson, *Electrochemical and Solid State Letters*, **9**, A295 (2006).



Identification of charge-discharge mechanisms

### X-Ray Diffraction



- Qualitative and quantitative analysis of crystalline phases
- Particle size and shape information
- High spatial resolution with small beam sizes





X Distance (mm)



G. V. Zhuang, G. Chen, J. Shim, X. Song, P. N. Ross, and T. J. Richardson, *J. Power Sources* **134**, 293-297 (2004).

Charge distribution in cycled electrodes

J. Liu, M. Kunz, K. Chen, N. Tamura, and T. J. Richardson, *Journal of Physical Chemistry Letters*, **1** (2010) 2120-2123.

#### X-ray Photoelectron Spectroscopy (XPS)

- Monoenergetic X-rays eject photoelectrons from a sample, and binding energies
  of the ejected photoelectrons provide information on sample elemental
  composition and chemical state
- Well suited for surface analysis of electrode samples



## Secondary Ion mass Spectrometry (SIMS)

- Secondary ions ejected from a sample during bombardment by highenergy primary ions are accelerated into a mass spectrometer, where they are separated according to their mass-to-charge ratio and counted
- Secondary-ion data in static SIMS mode identify composition of the electrode surface (1 - 2 monolayers)
- Dynamic SIMS data reveal electrode composition and trace impurity content as a function of sputtering time (depth)
- Identified transition metal (Mn, Ni, Co) accumulation on graphite electrodes as a catalyst for SEI layer changes that degrade Li-ion cell performance



Dynamic SIMS data on graphite negative electrode